

EPM300A-1AY

Medidor de energía multifunción

Modo de empleo

Tianjin Grewin Technology Co.Ltd Web:<u>www.grewin-tech.com</u> . Add:DongLi Distr Tianjin City, China Phone: +86-22-84943756 WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

1.1Introducción

EPM300A-1AY es una fuente de alimentación inteligente y versátil que integra funciones de comunicación y medición remotas.

Este medidor puede probar, mostrar y transferir de forma remota todas las configuraciones de energía comunes, entradas digitales de 2 canales. Y comunicarse con la computadora para convertirse en un sistema de vigilancia inteligente.

1.2Las funciones

1.2.1 Descripción de la función.

- 1.2.1.1 Mesure analogique
- voltaje
- actual
- Grado de desequilibrio de tensión
- Grado de desequilibrio actual
- Grado de carga actual
- Potencia activa, potencia reactiva y potencia aparente.
- Factor de potencia
- La frecuencia
- Energía activa total absoluta, energía reactiva total absoluta
- Entrada de energía activa absoluta, entrada de energía reactiva absoluta
- Energía activa de salida absoluta, energía reactiva de salida absoluta.
- 4 cuadrantes de energia reactiva
 - 1.2.1.2 Tipo de carga

Indique el tipo de carga actual:

Carga capacitiva o carga inductiva

1.2.1.3 Transferencia remota

Monitoreo de estado del interruptor 2DI en tiempo real

1.2.1.4 Comunicaciones

- Interfaz de comunicación: RS485
- Protocolo ModBUS-RTU
 - 1.2.1.5 visualización

Visualización en tiempo real sobre los parámetros y el estado de la DI

1.2.1.6Los factores se ajustan y ni siquiera se pierde la corriente.

1.3. Indicadores tecnicos

ARTÍ	ÍCULOS		DETALLES		
		Web	Configuración 3P3L, 3P4L		
		Valor nominal	AC400V o AC100V opcional		
		sobrecarga	Medida: 1.2 veces, instantánea 2 veces / 10s		
	Tensión	consumo	<1VA por fase		
		impedancia	>400kΩ		
prueba de ingreso.		precisión	Precisión de la medición RMS \pm 0.2%		
		Valor nominal	AC5A or AC1A		
	actual	sobrecarga	Suite 1.2 veces Instantánea 10 veces / 10s		
		consumo	<0.4VA por fase		
		impedancia	<20mΩ		
		precisión	Precisión de la medición RMS \pm 0.2%		
	La	frecuencia	40 ~ 60Hz de precisión \pm 0.02Hz		
	F	Potencia	Potencia activa, potencia reactiva, potencia aparente Precisión \pm 0.5%		
			Energía activa total absoluta		
			Energía reactiva total absoluta		
			Entrada absoluta de energía activa.		
		pordía	Entrada de energía reactiva absoluta		
	Potencia activa de		Potencia activa de salida absoluta.		
			Salida de energía reactiva absoluta		
			4 cuadrantes de energia reactiva		
Visualización de la			 Energía activa precisa ± 0.5%, energía reactiva ± 1% 		
prueba de ingreso.	vis	ualización	 Pantalla LED Comunicación Modbus para cambiar la interfaz de pantalla. 		
Entrada digital	CO	ntribución	Entrada de 2 canales, aislamiento del optoacoplador.		
Com	voltaje	ae alsiamiento	2500Vrms		
		menaz	K0400		

	-		
	protocolo	ModVUS-RTU	
		2400/4800/9600/19200 bps	
	Tasa de baudios	Control de paridad impar, control de paridad par, control	
		de paridad nulo	
Poder de trabajo	Voltaje de trabajo	AC:85V~265V or DC:100V~360V	
	Consumo de energia	≤2VA	
Ambiente de trabaie	Temperatura de trabajo	-20 °C ~55 °C	
	Temperatura de	40° C ~ .95° C	
	almacenamiento	-40 085 0	
	humedad	0 ~ 95% sin condensado	
acoqurar	Entre entrada / salida / shell / fuente de alimen		
asegurar	ruerza aisiante	2kV Acrms, 1 min.	
Dimonsión do poso	Tamaño	96mm×96mm×71 mm	
	peso	0.4kg	

3.Guía de operación

3.1 Ilustración de la visualización en pantalla.

- Introducción:
- 1.Ajuste actual:
- U:Tensión
- I:actual
- F:frecuencia y factor de potencia
- P/Q/S: Potencia
- 2. factor de desequilibrio trifásico
- 3.<u>Cargar:</u>
- Capacidad de carga (superior)
- 4. Carga de inductancia (abajo)
- 5. Grado eléctrico:
- Lmp: agotamiento
- Exp: emisión
- Total: total
- 6.<u>Estado</u>

7.<u>unidades:</u>

- Actual: AT
- Voltaje: V KV
- Factor de potencia: PF

Fig.3.1 Écran d'affichage

- Frecuencia: Hz
- Potencia activa: KWA
- Poder aparente: KVA
- Energía eléctrica activa: KWh.
- Energía eléctrica reactiva: Kvarh.
- Grado de desequilibrio trifásico:% o
- 8.<u>Tasa de carga actual</u>
- 9. Condición de comunicación

3.2 Botones:

Introducción: hay cuatro botones en total, F1, F2, F3, F4

Hay diferentes funciones en los diferentes modos de trabajo. La presión corta y la presión larga también son diferentes.

Pulsación corta: pulsar y soltar en 1s.

Pulsación larga: pulse los últimos más de 1s.

3.2.1 Lista de funciones de botones

En modo trabajo	-	F1	F2	F3	F4
	Bulacción corto	Interruptor de	Interruptor de	Interruptor de	Interruptor de
Modo de	Fuisacion conta	zona 1	zona 2	zona 3	energía
medición	Saparta larga	Escaneo		aamhia	
	Soporte largo	automatico		Cambio	
Modo de	Pulsación corta		+	-	desplazamiento
configuración	Soporte largo	Esc			Entrar

3.3 Modo de medición

Después de encender, el medidor entra en modo de medición. Este modo se utiliza para comprobar los parámetros de medición.

3.3.1 Visualización de la zona 1:

Total de 5 páginas y visualización:

Tasa de carga actual y actual, grado de desequilibrio de corriente, voltaje de fase, voltaje de cable, grado de desequilibrio de voltaje. Presione F1 brevemente para seleccionar diferentes páginas. No se puede mostrar Uca.

Indicación de la tasa de carga:

Tasa porcentual de corriente secundaria del valor de ajuste CT2, de 0% a 120%

Cuando la pantalla actual está separada, se muestra la tasa de carga de todas las fases. La función se describe a continuación.

Si se excede el valor del parámetro CT2, se muestra el símbolo de alarma.

Fig.3.3.1.2Visualización de la tasa de carga

3.3.2 Visualización de la zona 2:

Total 2 páginas y visualización:

Factor de potencia trifásico y frecuencia, factor de potencia de fase separada. Presione brevemente F2 para revisar diferentes páginas.

Fig.3.3.2 Factor de potencia / frecuencia trifásica

3.3.3 Visualización de la zona 3: Total de 4 páginas y visualización:

Factor de potencia de fase separada

Potencia activa separada, Potencia reactiva separada, Potencia aparente separada, Potencia total (PQS). Presione brevemente F3 para revisar todas las páginas. .3.3.4

Fig.3.3.3 Fase separada de potencia activa Potencia reactiva con fase separada. Poder aparente separado Potencia activa / reactiva total en tres fases.

3.3.4 Visualización de energía:	Energía activa absoluta	imp Tõhul	2802 ^{kwh}
Presione brevemente en F4 para comprobar:	Energía reactiva absoluta	imp Total	572kwan
Energia activa total positiva Energía activa total inversa	Energía activa total +	Imp	280. /kwh
Energía reactiva total positiva Energía reactiva total inversa	Energia activa total-	Exp	[]. Jikwh
4 cuadrantes de energia reactiva	Energía reactiva total +	hab	502 kvent
Como en la fig.3.3.4	Energía reactiva total-	Exp	10 Kineoto
Congelar el grado electrico no Realiza la visualización en tiempo real.	Fase 1 reactiva	1	30.7 _{komm}
El grado recogido por el Modbus no está astualizado poro	Fase 2 reactiva	2	195 kunt
serán datos en tiempo real	Fase 3 reactiva	3	II kvent
despues de descongelar	Fase 4 reactiva		78

Fig.3.3.4 Presentación de la pantalla

3.3.5Instrumentos de la marca de comunicación

Lorsque le compteur reçoit les données du poste maître, l'écran ci-dessous fig.3.3.5.1. Cuando el contador transfiere la fecha a la estación maestra, la pantalla de abajo fig.3.3.5.2

|--|

Fig.3.3.5.1 Recibiendo datos Fig.3.3.5.2 Transferencia de datos

3.3.6 Cambia la cantidad mostrada

La condición del cuanto de conmutador se muestra en la pantalla como lo indico en la fig.3.3.6. aquí:

DI1 ABIERTO

DI2 ABIERTO

DI3 & DI4 no se utiliza

Fig.3.3.6 Cambiar la visualización de la condición de cantidad