

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

Tianjin Grewin Technology Co.Ltd Web:<u>www.grewin-tech.com</u> .

Add:DongLi Distr Tianjin City, China Phone: 86-22-84943756 WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

TDRL-901 Cable Fault Locator

User Guide

We reserve all right in this document and in the information contained within. Reproduction, use or disclosure to third partners without express authorization is strictly forbidden.

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

Introduction

The TDRL-901 Cable Fault Locator is a portable handhold device used for locating the broken fault, cross fault, insulation fault and so on. It can be used to measure the cable length, wave velocity and distinguish the middle joints and terminals. It is a simple locating device, adopts to kinds cable and specially, the telecomputer cable.

Design Features

- TDRL(Time Domain Reflectometry)method make it possible to measure broken fault, cross fault, insulation fault and so on.
- Automatic measurement
- Auto power-off when sleeping and low battery voltage
- Friendly user interface, easy to operate
- Supply by dry batter or recharge battery
- Handheld device, easy to carry

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

Tech. Specifications

Measurement distance	0-8km	
	0-1km,below 1m;	
Resolution ratio	2km,below 2m;	
	4-8km,below 8m	
Impulse range	30V	
Impulse width	80ns-5µ s,auto adjustments	
Blind zone	1m	
Wave velocity range	100-300m/µ s	
Adjustable gain range	0-80db	
Supply power	AA battery x 6pcs	
Volume	225mm×155mm×50mm	
Weight	0.42kgs without battery	
Operating Temperature	-10℃ -40℃	
Humidity	5-90%RH	
Elevation	<4500m	

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

working principle&Product Structure

• Basic working principle

Distance locating:

This device using TDR(Time

Domain Reflectometry).When

locating, low voltage pulse is

injected into and spread along

the cable until reach the

impedance mismatch

point.These points include the short circuit point, fault point,middle connector and so on.When reach these points,the pulse reflection will be send back and record.See Figure.1

Figure 1 shows a fault point in a cable, Δt is the time during transmitted pulse and pulse reflection is received, so fault point distance *Lx* as below:

(1)
$$Lx = \frac{V\Delta t}{2}$$

V:pulse Traveling-wave speed

Fault diagnose

Mismatching point reflection coefficient ρ :

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

(2)
$$\rho = \frac{(z_i - z_c)}{(z_i + z_c)}$$

Z_i:input impedance of the fault point

Zc:characteristic impedance

According (2):

Disconnection fault pulse reflection is same polarity as the transmitted pulse when short or cross fault pulse reflection is opposite polarity.So we could judge the fault as below:

Figure 2A. Reflection waveform of disconnection fault

Figure 2B. Reflection waveform of cross fault

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

• Device configurations

TDRL-901 cable fault locator including main engine, testing lines and

documents. Main engine as below Figure 3:

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

Display the informations

Basic function:

1/2	> Change testing range
Cursor	\succ \Box \Box Move the cursor
3/4	> Adjust single gain
On/Off	Power on/off
X	> Open/close screen backlight
Locate	> Locating the fault point automatically
Test	> Click for testing once while pressing for more than 3 seconds
	to begin continuous testing and waveform displaying

■ Other function:Press shift(☆) and other button together

Shift&V+/V-	Change the wave velocity
Shift& ⊃ / ⊕	> Zoom in or out the waveform
Shift&Save	Storage the waveform
Shift&Comp	 Display the saved waveform and current waveform together for comparing
Shift%Auto	Find the suitable testing range and the most possible fault point

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

Display interface when working

Figure 4. Interface details

Specification

1	> Transmitted impulse
2	> Battery lever
3	> Temporarily store mark
4	> Comparing mark
5	> Cursor
6	> Distance
7	Reflection impulse of cable fault point
8	> Wave velocity
9	> Measuring range
10	> Gain
11	> Display scale

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

Application

• Fault determined

When cable fault appeared, pls first judge fault feather and broken lever. The TDR fault are divided into three kinds as below:

Disconnection fault: cable broken and communication

disconnect.

- Crossing fault which is generally classified into three kinds: grounding fault, self-crossing fault, and common crossing. During these conditions, the insulating layer was broken even touched to affect the communication quality.
- Defective insulation fault:

The cable corn is entranced by moisture or water to reduce the insolation resistance. The difference between this and above crossing fault is this has a big resistance, common over thousand Ohms.

In generally, for above first and second fault, it's easy to detect by pulse test, but for the third, user should consider the cable path, time of fault, range of the fault, environment and so on.

• Lines connection

Before testing, pls disconnection inside devices with problem cable first.

TIANJIN GREWIN TECHNOLOGY CO.,LTD. Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

Then inside testing to make sure the rough location of the fault point.

After then, go to the filed to pinpoint the fault.

When testing, connect the lines plug with testing interface, and clamp

the fault cable.

- Choose testing range
- To get complete testing waveform, the testing range should

be several hundred meters longer than the length of the cable.For

example, if the cable is 900m, the testing range should be 2km. when

found the fault point closer, reduce the range accordingly.

■ This device offer below six testing ranges to choose, 125m,

250m,500m,1km,2km and 4km.

Press 1 or 2 button to change the testing range.Check

'basic function' for reference.

Pls notice that, the device test once automatically after

once range changing.

• Setting the wave velocity

According different cable material, user should choose different wave

velocity.

Shift&V+/—	\triangleright	Change the wave velocity
Adjustable range	\checkmark	100-300m/µ s

*Some common cable pls take below for reference:

-			
Plastic power cable	\blacktriangleright	201m/µ s	
Polyethylene power cable	\checkmark	192m/µ s	
Oil filled cable	\checkmark	160m/µ s	
paper pulp insulated cable	\blacktriangleright	216m/µ s	
	0		

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

Accurate measurement, use the method in page , to calibrate the wave speed

Gain adjustment

3/4 button> Adjust single gain, increase or reduce> Auto testing for every time the gain changing

• Gain adjustment

Gain is the magnification times of the signal. This could change the wave amplitude. Common in every range, there re default gain, but if it's not suitable, you also could choose manual adjustable. Gain adjustment: press Gain +/-to change the signal gain. Every time change the gain, the device will test automatically.

• Cursor positioning

The beginning of the reflection impulse waveform is the fault position. When move the cursor into this position, for example, the virtual cursor in pic.5, there will be a distance appear in the right corner of the screen which is the fault distance.

Pls notice, if the cursor on other position, the distance is not useful. *Auto position: Press "Auto" key, device will automatically position. If deviation, please position manual.

*Maunal position: Press $\langle \Box \& \Box \rangle$ to move the curve left and right.

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

Refer fig. 5

*This waveform is a typical example of crossing fault.The dot cursor position is the fault position,453m.

If the waveform is downward, the fault is broken fault.

Waveform zoom in and zoom out

To get a higher resolution, please use zoom in/out function.

Press $\stackrel{\text{(t)}}{\longrightarrow}$ button to zoom in and $\stackrel{\text{(t)}}{\longrightarrow}$ to zoom out.

*When 'Zoom out', auto positioning function is not workable.

• Waveform temporary storage and compare

It's easier to distinguish the fault type through comparing the good cable and fault cable.

First, testto get the fault waveform and press TS to keep it. There's a

TS mark on the left corner of the screen.

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

Then test a good cable under the same condition.

Press Comp. to show the two waveforms together and there'll be a

compare mark on the screen.

Find the fault point from check the difference of the two waves. Fig. 6

show this condition.

Auto testing

Press Auto key, the device will automatically test, choose range and position cursor. The result is only for reference.

• Continuous testing

Longtime press Test up to 3 sec. and the device will come in the

continuous testing mode. And will stop after 1 minute. Or you could

press Test button again to stop.

This function is common used to routing inspect multi-pair core wire.

Web:<u>www.grewin-tech.com</u> WhatsApp:+86-13072088960 Email:salesmanager@grewin-tech.com

• Wave velocity correct

According now the cable length, we could correct the wave velocity. Use same known length cable and test the opposite terminal open circuit and short circuit waveform and compare. Move the virtual cursor to the obvious difference and change the wave velocity to make the tested distance same as the known length. Then the velocity is the real one of this cable.

Instrument Maintenance

Charge

Standard configuration is 6AA NI-MH battery , capacity above

1300mAH is better. Dry battery is also ok if no NI-MH battery if

necessary but need high capacity ones.

*Please notice don't put the battery backwards.

VISIT US AT WWW.GREWIN-TECH.COM